Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
2.
Cell Mol Immunol ; 19(1): 67-78, 2022 01.
Article in English | MEDLINE | ID: covidwho-1541184

ABSTRACT

The global coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused severe morbidity and mortality in humans. It is urgent to understand the function of viral genes. However, the function of open reading frame 10 (ORF10), which is uniquely expressed by SARS-CoV-2, remains unclear. In this study, we showed that overexpression of ORF10 markedly suppressed the expression of type I interferon (IFN-I) genes and IFN-stimulated genes. Then, mitochondrial antiviral signaling protein (MAVS) was identified as the target via which ORF10 suppresses the IFN-I signaling pathway, and MAVS was found to be degraded through the ORF10-induced autophagy pathway. Furthermore, overexpression of ORF10 promoted the accumulation of LC3 in mitochondria and induced mitophagy. Mechanistically, ORF10 was translocated to mitochondria by interacting with the mitophagy receptor Nip3-like protein X (NIX) and induced mitophagy through its interaction with both NIX and LC3B. Moreover, knockdown of NIX expression blocked mitophagy activation, MAVS degradation, and IFN-I signaling pathway inhibition by ORF10. Consistent with our observations, in the context of SARS-CoV-2 infection, ORF10 inhibited MAVS expression and facilitated viral replication. In brief, our results reveal a novel mechanism by which SARS-CoV-2 inhibits the innate immune response; that is, ORF10 induces mitophagy-mediated MAVS degradation by binding to NIX.


Subject(s)
COVID-19/genetics , COVID-19/virology , Immunity, Innate/immunology , Open Reading Frames , SARS-CoV-2/genetics , Signal Transduction , Adaptor Proteins, Signal Transducing/metabolism , Antiviral Agents/metabolism , Autophagy/immunology , Gene Silencing , HEK293 Cells , HeLa Cells , Humans , Interferon Type I/metabolism , Mitochondria/metabolism , Mitophagy , Proteasome Endopeptidase Complex/metabolism , Ubiquitination , Viral Proteins/metabolism , Virus Replication
3.
Clin Infect Dis ; 72(9): e240-e248, 2021 05 04.
Article in English | MEDLINE | ID: covidwho-1216620

ABSTRACT

BACKGROUND: Recent studies have indicated that females with coronavirus disease 2019 (COVID-19) have a lower morbidity, severe case rate, and mortality and better outcome than those of male individuals. However, the reasons remained to be addressed. METHODS: To find the factors that potentially protect females from COVID-19, we recruited all confirmed patients hospitalized at 3 branches of Tongji Hospital (N = 1902), and analyzed the correlation between menstrual status (n = 509, including 68 from Mobile Cabin Hospital), female hormones (n = 78), and cytokines related to immunity and inflammation (n = 263), and the severity/clinical outcomes in female patients <60 years of age. RESULTS: Nonmenopausal female patients had milder severity and better outcome compared with age-matched men (P < .01 for both). Menopausal patients had longer hospitalization times than nonmenopausal patients (hazard ratio [HR], 1.91 [95% confidence interval {CI}, 1.06-3.46]; P = .033). Both anti-Müllerian hormone (AMH) and estradiol (E2) showed a negative correlation with severity of infection (adjusted HR, 0.146 [95% CI, .026-.824], P = .029 and 0.304 [95% CI, .092-1.001], P = .05, respectively). E2 levels were negatively correlated with interleukin (IL) 2R, IL-6, IL-8, and tumor necrosis factor alpha in the luteal phase (P = .033, P = .048, P = .054, and P = .023) and C3 in the follicular phase (P = .030). CONCLUSIONS: Menopause is an independent risk factor for female COVID-19 patients. AMH and E2 are potential protective factors, negatively correlated with COVID-19 severity, among which E2 is attributed to its regulation of cytokines related to immunity and inflammation.


Subject(s)
COVID-19 , SARS-CoV-2 , China/epidemiology , Cross-Sectional Studies , Female , Gonadal Steroid Hormones , Humans , Male , Retrospective Studies
4.
Front Med (Lausanne) ; 8: 635255, 2021.
Article in English | MEDLINE | ID: covidwho-1170094

ABSTRACT

Objective: This study was intended to investigate the relationship between COVID-19 disease and ovarian function in reproductive-aged women. Methods: Female COVID-19 patients of reproductive age were recruited between January 28 and March 8, 2020 from Tongji Hospital in Wuhan. Their baseline and clinical characteristics, as well as menstrual conditions, were recorded. Differentials in ovarian reserve markers and sex hormones (including anti-Müllerian hormone [AMH], follicle-stimulating hormone [FSH], the ratio of FSH to luteinizing hormone [LH], estradiol [E2], progesterone [P], testosterone [T], and prolactin [PRL] were compared to those of healthy women who were randomly selected and individually matched for age, region, and menstrual status. Uni- and multi-variable hierarchical linear regression analyses were performed to identify risk factors associated with ovarian function in COVID-19 women. Results: Seventy eight patients agreed to be tested for serum hormone, of whom 17 (21.79%) were diagnosed as the severe group and 39 (50%) were in the basal level group. Menstrual status (P = 0.55), menstrual volumes (P = 0.066), phase of menstrual cycle (P = 0.58), and dysmenorrhea history (P = 0.12) were similar without significant differences between non-severe and severe COVID-19 women. Significant lower serum AMH level/proportion (0.19/0.28 vs. 1.12 ng/ml, P = 0.003/0.027; AMH ≤ 1.1 ng/ml: 75/70.4 vs. 49.7%, P = 0.009/0.004), higher serum T (0.38/0.39 vs. 0.22 ng/ml, P < 0.001/0.001) and PRL (25.43/24.10 vs. 12.12 ng/ml, P < 0.001/0.001) levels were observed in basal level and the all-COVID-19 group compared with healthy age-matched control. When adjusted for age, menstrual status and parity variations in multivariate hierarchical linear regression analysis, COVID-19 disease was significantly associated with serum AMH (ß = -0.191; 95% CI: -1.177-0.327; P = 0.001), T (ß = 0.411; 95% CI: 11.154-22.709; P < 0.001), and PRL (ß = 0.497; 95% CI: 10.787-20.266; P < 0.001), suggesting an independent risk factor for ovarian function, which accounted for 3.2% of the decline in AMH, 14.3% of the increase in T, and 20.7% of the increase in PRL. Conclusion: Ovarian injury, including declined ovarian reserve and reproductive endocrine disorder, can be observed in women with COVID-19. More attention should be paid to their ovarian function under this pandemic, especially regarding reproductive-aged women. Clinical Trial Number: ChiCTR2000030015.

SELECTION OF CITATIONS
SEARCH DETAIL